教育行業(yè)A股IPO第一股(股票代碼 003032)

全國(guó)咨詢/投訴熱線:400-618-4000

面試題之hadoop相關(guān)

更新時(shí)間:2018年10月24日15時(shí)59分 來(lái)源:傳智播客 瀏覽次數(shù):

  1、簡(jiǎn)答說(shuō)一下hadoop的map-reduce編程模型

  首先map task會(huì)從本地文件系統(tǒng)讀取數(shù)據(jù),轉(zhuǎn)換成key-value形式的鍵值對(duì)集合

  使用的是hadoop內(nèi)置的數(shù)據(jù)類(lèi)型,比如longwritable、text等

  將鍵值對(duì)集合輸入mapper進(jìn)行業(yè)務(wù)處理過(guò)程,將其轉(zhuǎn)換成需要的key-value在輸出

  之后會(huì)進(jìn)行一個(gè)partition分區(qū)操作,默認(rèn)使用的是hashpartitioner,可以通過(guò)重寫(xiě)hashpartitioner的getpartition方法來(lái)自定義分區(qū)規(guī)則

  之后會(huì)對(duì)key進(jìn)行進(jìn)行sort排序,grouping分組操作將相同key的value合并分組輸出,在這里可以使用自定義的數(shù)據(jù)類(lèi)型,重寫(xiě)Writable Comparator的Comparator方法來(lái)自定義排序規(guī)則,重寫(xiě)RawComparator的compara方法來(lái)自定義分組規(guī)則

  之后進(jìn)行一個(gè)combiner歸約操作,其實(shí)就是一個(gè)本地段的reduce預(yù)處理,以減小后面shufle和reducer的工作量

  reduce task會(huì)通過(guò)網(wǎng)絡(luò)將各個(gè)數(shù)據(jù)收集進(jìn)行reduce處理,最后將數(shù)據(jù)保存或者顯示,結(jié)束整個(gè)job

  2、hadoop的TextInputFormat作用是什么,如何自定義實(shí)現(xiàn)

  InputFormat會(huì)在map操作之前對(duì)數(shù)據(jù)進(jìn)行兩方面的預(yù)處理

  1是getSplits,返回的是InputSplit數(shù)組,對(duì)數(shù)據(jù)進(jìn)行split分片,每片交給map操作一次

  2是getRecordReader,返回的是RecordReader對(duì)象,對(duì)每個(gè)split分片進(jìn)行轉(zhuǎn)換為key-value鍵值對(duì)格式傳遞給map

  常用的InputFormat是TextInputFormat,使用的是LineRecordReader對(duì)每個(gè)分片進(jìn)行鍵值對(duì)的轉(zhuǎn)換,以行偏移量作為鍵,行內(nèi)容作為值

  自定義類(lèi)繼承InputFormat接口,重寫(xiě)createRecordReader和isSplitable方法

  在createRecordReader中可以自定義分隔符

  3、hadoop和spark的都是并行計(jì)算,那么他們有什么相同和區(qū)別

  兩者都是用mr模型來(lái)進(jìn)行并行計(jì)算,hadoop的一個(gè)作業(yè)稱(chēng)為job,job里面分為map task和reduce task,每個(gè)task都是在自己的進(jìn)程中運(yùn)行的,當(dāng)task結(jié)束時(shí),進(jìn)程也會(huì)結(jié)束

  spark用戶提交的任務(wù)成為application,一個(gè)application對(duì)應(yīng)一個(gè)sparkcontext,app中存在多個(gè)job,每觸發(fā)一次action操作就會(huì)產(chǎn)生一個(gè)job

  這些job可以并行或串行執(zhí)行,每個(gè)job中有多個(gè)stage,stage是shuffle過(guò)程中DAGSchaduler通過(guò)RDD之間的依賴(lài)關(guān)系劃分job而來(lái)的,每個(gè)stage里面有多個(gè)task,組成taskset有TaskSchaduler分發(fā)到各個(gè)executor中執(zhí)行,executor的生命周期是和app一樣的,即使沒(méi)有job運(yùn)行也是存在的,所以task可以快速啟動(dòng)讀取內(nèi)存進(jìn)行計(jì)算

  hadoop的job只有map和reduce操作,表達(dá)能力比較欠缺而且在mr過(guò)程中會(huì)重復(fù)的讀寫(xiě)hdfs,造成大量的io操作,多個(gè)job需要自己管理關(guān)系

  spark的迭代計(jì)算都是在內(nèi)存中進(jìn)行的,API中提供了大量的RDD操作如join,groupby等,而且通過(guò)DAG圖可以實(shí)現(xiàn)良好的容錯(cuò)

  4、為什么要用flume導(dǎo)入hdfs,hdfs的構(gòu)架是怎樣的

  flume可以實(shí)時(shí)的導(dǎo)入數(shù)據(jù)到hdfs中,當(dāng)hdfs上的文件達(dá)到一個(gè)指定大小的時(shí)候會(huì)形成一個(gè)文件,或者超過(guò)指定時(shí)間的話也形成一個(gè)文件

  文件都是存儲(chǔ)在datanode上面的,namenode記錄著datanode的元數(shù)據(jù)信息,而namenode的元數(shù)據(jù)信息是存在內(nèi)存中的,所以當(dāng)文件切片很小或者很多的時(shí)候會(huì)卡死

  5、map-reduce程序運(yùn)行的時(shí)候會(huì)有什么比較常見(jiàn)的問(wèn)題

  比如說(shuō)作業(yè)中大部分都完成了,但是總有幾個(gè)reduce一直在運(yùn)行

  這是因?yàn)檫@幾個(gè)reduce中的處理的數(shù)據(jù)要遠(yuǎn)遠(yuǎn)大于其他的reduce,可能是因?yàn)閷?duì)鍵值對(duì)任務(wù)劃分的不均勻造成的數(shù)據(jù)傾斜

  解決的方法可以在分區(qū)的時(shí)候重新定義分區(qū)規(guī)則對(duì)于value數(shù)據(jù)很多的key可以進(jìn)行拆分、均勻打散等處理,或者是在map端的combiner中進(jìn)行數(shù)據(jù)預(yù)處理的操作

  6、簡(jiǎn)單說(shuō)一下hadoop和spark的shuffle過(guò)程

  hadoop:map端保存分片數(shù)據(jù),通過(guò)網(wǎng)絡(luò)收集到reduce端

  spark:spark的shuffle是在DAGSchedular劃分Stage的時(shí)候產(chǎn)生的,TaskSchedule要分發(fā)Stage到各個(gè)worker的executor,減少shuffle可以提高性能

  7、Hive中存放是什么?

  表(數(shù)據(jù)+元數(shù)據(jù))。 存的是和hdfs的映射關(guān)系,hive是邏輯上的數(shù)據(jù)倉(cāng)庫(kù),實(shí)際操作的都是hdfs上的文件,HQL就是用sql語(yǔ)法來(lái)寫(xiě)的mr程序。

  8、Hive與關(guān)系型數(shù)據(jù)庫(kù)的關(guān)系?

  沒(méi)有關(guān)系,hive是數(shù)據(jù)倉(cāng)庫(kù),不能和數(shù)據(jù)庫(kù)一樣進(jìn)行實(shí)時(shí)的CURD操作。

  是一次寫(xiě)入多次讀取的操作,可以看成是ETL工具。

  9、Flume工作機(jī)制是什么?

  核心概念是agent,里面包括source、chanel和sink三個(gè)組件。

  source運(yùn)行在日志收集節(jié)點(diǎn)進(jìn)行日志采集,之后臨時(shí)存儲(chǔ)在chanel中,sink負(fù)責(zé)將chanel中的數(shù)據(jù)發(fā)送到目的地。

  只有成功發(fā)送之后chanel中的數(shù)據(jù)才會(huì)被刪除。

  首先書(shū)寫(xiě)flume配置文件,定義agent、source、chanel和sink然后將其組裝,執(zhí)行flume-ng命令。

  10、Sqoop工作原理是什么?

  hadoop生態(tài)圈上的數(shù)據(jù)傳輸工具。

  可以將關(guān)系型數(shù)據(jù)庫(kù)的數(shù)據(jù)導(dǎo)入非結(jié)構(gòu)化的hdfs、hive或者bbase中,也可以將hdfs中的數(shù)據(jù)導(dǎo)出到關(guān)系型數(shù)據(jù)庫(kù)或者文本文件中。

  使用的是mr程序來(lái)執(zhí)行任務(wù),使用jdbc和關(guān)系型數(shù)據(jù)庫(kù)進(jìn)行交互。

  import原理:通過(guò)指定的分隔符進(jìn)行數(shù)據(jù)切分,將分片傳入各個(gè)map中,在map任務(wù)中在每行數(shù)據(jù)進(jìn)行寫(xiě)入處理沒(méi)有reduce。

  export原理:根據(jù)要操作的表名生成一個(gè)java類(lèi),并讀取其元數(shù)據(jù)信息和分隔符對(duì)非結(jié)構(gòu)化的數(shù)據(jù)進(jìn)行匹配,多個(gè)map作業(yè)同時(shí)執(zhí)行寫(xiě)入關(guān)系型數(shù)據(jù)庫(kù)

  11、Hbase行健列族的概念,物理模型,表的設(shè)計(jì)原則?

  行?。菏莌base表自帶的,每個(gè)行健對(duì)應(yīng)一條數(shù)據(jù)。

  列族:是創(chuàng)建表時(shí)指定的,為列的集合,每個(gè)列族作為一個(gè)文件單獨(dú)存儲(chǔ),存儲(chǔ)的數(shù)據(jù)都是字節(jié)數(shù)組,其中的數(shù)據(jù)可以有很多,通過(guò)時(shí)間戳來(lái)區(qū)分。

  物理模型:整個(gè)hbase表會(huì)拆分為多個(gè)region,每個(gè)region記錄著行健的起始點(diǎn)保存在不同的節(jié)點(diǎn)上,查詢時(shí)就是對(duì)各個(gè)節(jié)點(diǎn)的并行查詢,當(dāng)region很大時(shí)使用.META表存儲(chǔ)各個(gè)region的起始點(diǎn),-ROOT又可以存儲(chǔ).META的起始點(diǎn)。

  rowkey的設(shè)計(jì)原則:各個(gè)列簇?cái)?shù)據(jù)平衡,長(zhǎng)度原則、相鄰原則,創(chuàng)建表的時(shí)候設(shè)置表放入regionserver緩存中,避免自動(dòng)增長(zhǎng)和時(shí)間,使用字節(jié)數(shù)組代替string,最大長(zhǎng)度64kb,最好16字節(jié)以內(nèi),按天分表,兩個(gè)字節(jié)散列,四個(gè)字節(jié)存儲(chǔ)時(shí)分毫秒。

  列族的設(shè)計(jì)原則:盡可能少(按照列族進(jìn)行存儲(chǔ),按照region進(jìn)行讀取,不必要的io操作),經(jīng)常和不經(jīng)常使用的兩類(lèi)數(shù)據(jù)放入不同列族中,列族名字盡可能短。

  12、combiner和partition的作用

  combiner是reduce的實(shí)現(xiàn),在map端運(yùn)行計(jì)算任務(wù),減少map端的輸出數(shù)據(jù)。

  作用就是優(yōu)化。

  但是combiner的使用場(chǎng)景是mapreduce的map輸出結(jié)果和reduce輸入輸出一樣。

  partition的默認(rèn)實(shí)現(xiàn)是hashpartition,是map端將數(shù)據(jù)按照reduce個(gè)數(shù)取余,進(jìn)行分區(qū),不同的reduce來(lái)copy自己的數(shù)據(jù)。

  partition的作用是將數(shù)據(jù)分到不同的reduce進(jìn)行計(jì)算,加快計(jì)算效果

  13、mllib支持的算法?

  大體分為四大類(lèi),分類(lèi)、聚類(lèi)、回歸、協(xié)同過(guò)濾。

  15、Hadoop平臺(tái)集群配置、環(huán)境變量設(shè)置?

  zookeeper:修改zoo.cfg文件,配置dataDir,和各個(gè)zk節(jié)點(diǎn)的server地址端口,tickTime心跳時(shí)間默認(rèn)是2000ms,其他超時(shí)的時(shí)間都是以這個(gè)為基礎(chǔ)的整數(shù)倍,之后再dataDir對(duì)應(yīng)目錄下寫(xiě)入myid文件和zoo.cfg中的server相對(duì)應(yīng)。

  hadoop:修改

  hadoop-env.sh配置java環(huán)境變量

  core-site.xml配置zk地址,臨時(shí)目錄等

  hdfs-site.xml配置nn信息,rpc和http通信地址,nn自動(dòng)切換、zk連接超時(shí)時(shí)間等

  yarn-site.xml配置resourcemanager地址

  mapred-site.xml配置使用yarn

  slaves配置節(jié)點(diǎn)信息

  格式化nn和zk。

  hbase:修改

  hbase-env.sh配置java環(huán)境變量和是否使用自帶的zk

  hbase-site.xml配置hdfs上數(shù)據(jù)存放路徑,zk地址和通訊超時(shí)時(shí)間、master節(jié)點(diǎn)

  regionservers配置各個(gè)region節(jié)點(diǎn)

  zoo.cfg拷貝到conf目錄下

  spark:

  安裝Scala

  修改spark-env.sh配置環(huán)境變量和master和worker節(jié)點(diǎn)配置信息

  環(huán)境變量的設(shè)置:直接在/etc/profile中配置安裝的路徑即可,或者在當(dāng)前用戶的宿主目錄下,配置在.bashrc文件中,該文件不用source重新打開(kāi)shell窗口即可,配置在.bash_profile的話只對(duì)當(dāng)前用戶有效。

  16、Hadoop性能調(diào)優(yōu)?

  調(diào)優(yōu)可以通過(guò)系統(tǒng)配置、程序編寫(xiě)和作業(yè)調(diào)度算法來(lái)進(jìn)行。

  hdfs的block.size可以調(diào)到128/256(網(wǎng)絡(luò)很好的情況下,默認(rèn)為64)

  調(diào)優(yōu)的大頭:mapred.map.tasks、mapred.reduce.tasks設(shè)置mr任務(wù)數(shù)(默認(rèn)都是1)

  mapred.tasktracker.map.tasks.maximum每臺(tái)機(jī)器上的最大map任務(wù)數(shù)

  mapred.tasktracker.reduce.tasks.maximum每臺(tái)機(jī)器上的最大reduce任務(wù)數(shù)

  mapred.reduce.slowstart.completed.maps配置reduce任務(wù)在map任務(wù)完成到百分之幾的時(shí)候開(kāi)始進(jìn)入

  這個(gè)幾個(gè)參數(shù)要看實(shí)際節(jié)點(diǎn)的情況進(jìn)行配置,reduce任務(wù)是在33%的時(shí)候完成copy,要在這之前完成map任務(wù),(map可以提前完成)

  mapred.compress.map.output,mapred.output.compress配置壓縮項(xiàng),消耗cpu提升網(wǎng)絡(luò)和磁盤(pán)io

  合理利用combiner

  注意重用writable對(duì)象

  17、Hadoop高并發(fā)?

  首先肯定要保證集群的高可靠性,在高并發(fā)的情況下不會(huì)掛掉,支撐不住可以通過(guò)橫向擴(kuò)展。

  datanode掛掉了使用hadoop腳本重新啟動(dòng)。

  21、map-reduce程序運(yùn)行的時(shí)候會(huì)有什么比較常見(jiàn)的問(wèn)題?

  比如說(shuō)作業(yè)中大部分都完成了,但是總有幾個(gè)reduce一直在運(yùn)行。

  這是因?yàn)檫@幾個(gè)reduce中的處理的數(shù)據(jù)要遠(yuǎn)遠(yuǎn)大于其他的reduce,可能是因?yàn)閷?duì)鍵值對(duì)任務(wù)劃分的不均勻造成的數(shù)據(jù)傾斜。

  解決的方法可以在分區(qū)的時(shí)候重新定義分區(qū)規(guī)則對(duì)于value數(shù)據(jù)很多的key可以進(jìn)行拆分、均勻打散等處理,或者是在map端的combiner中進(jìn)行數(shù)據(jù)預(yù)處理的操作。



作者:傳智播客大數(shù)據(jù)培訓(xùn)學(xué)院
首發(fā):http://cloud.itcast.cn

0 分享到:
和我們?cè)诰€交談!